
Introduction to the
ArchivesSpace API

ArchivesSpace Member Forum
Portland State University
July 25, 2017

Lora Woodford

Introduction

The Odd Couple
We are stronger and smarter together THOUGH YOU ONLY GET ME!

Lora Valerie
● Digital Archivist
● Never met a task she didn’t want to solve

with Python/Ruby
● Thinks hanging with the Bmore on Rails

group sounds like a fun night out
● Helped migrate two institutions to

ArchivesSpace and found it thrilling
● Enjoys craft beer, cross stitch, and the

Pittsburgh Steelers
● Knows how to programmatically manipulate

data

● CATS YAY!

● (Former) Photo Archivist
● Never met a task she didn’t want to solve with

an MS Access database
● Knows rails are either “narrow gauge” or

“standard” because ❤ steam trains
● Helped migrate to ASpace and felt like a fish

climbing a tree
● Enjoys geocaching, hiking, and planning

ambitious camping trips
● Knows data modeling and systematic analysis

of the really hard problems

● CATS YAY!

The 1-up learning experience
You can’t learn it all and we can’t teach it

Are you a 3?

We hope to give you
new ideas, scripts, and

momentum.

Are you a 2?

We hope you’ll leave a
3.

Are you a 1?

We hope you’ll leave a
2.

Workshop aims
1.

Practical, real-life application

...including the bad parts of real-life

Resource-packed GitHub

These voluminous slides

2.

Assurances:

You are not alone

I didn’t become an archivist for this

either (but some of you may have!)

This is difficult and frustrating

You didn’t miss a flight; the airport

turned into a space launch while you

were in the parking lot

https://en.wikipedia.org/wiki/Accelerating_change
https://en.wikipedia.org/wiki/Accelerating_change
https://en.wikipedia.org/wiki/Accelerating_change
https://en.wikipedia.org/wiki/Accelerating_change
https://en.wikipedia.org/wiki/Accelerating_change

What does API stand for?

Application
As in a computer application, like Word or Chrome

Programming
As in computer “programming,” or taking steps to make a computer do
something you want it to do

Interface
As in the the place where two systems meet

What do APIs do?
As the prior slide suggests, APIs make it possible for applications to interact
(or interface) with one another.

APIs are not new, and there are many types of APIs.

When you copy content from a Word document to your clipboard, then paste
that content into an Outlook e-mail, it works because your computer
operating system, which both your versions of Word and Outlook are
programmed to run on, uses an API to allow the interchange of information.

APIs tell software developers the rules of the road that they must follow if
they want their applications to play well with others.

For more: http://readwrite.com/2013/09/19/api-defined/

http://readwrite.com/2013/09/19/api-defined/

That’s not at all what I thought an API was!

Though anything that allows an interchange of information between two
applications is technically a form of an API, what we typically mean today
when we say “API” is a very specific thing.

That thing is a web API.

Ok, so what is a web API?

Complicated: A RESTful API is an application program
interface (API) that uses HTTP requests to GET, PUT,
POST and DELETE data.

For more: http://searchcloudstorage.techtarget.com/definition/RESTful-API

Simple: You access it over the web, using
URL-like directions, and are limited to 3-4
simple commands or activities.

Extra nerdy sidebar:

● Web APIs also come in several flavors, including SOAP and REST.
● We’re going to be exclusively working with RESTful APIs today, as they’re far more prevalent

in archives/libraries technologies.
● REST stands for “representational state transfer” and was defined in 2000 in a doctoral

dissertation by Roy Fielding.
● REST essentially dictates how an application should be able to textually interact with a web

service.

http://searchexchange.techtarget.com/definition/application-program-interface
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchcloudstorage.techtarget.com/definition/RESTful-API

Vocabulary pitstop:
API Terms

● GET, POST, and DELETE are the three cornerstone commands for a RESTful API
● We will use these terms throughout
● Think of them as View, Save, and of course, Delete
● All APIs allow GETs, some let you POST, and few allow you to Delete

○ ASpace does all three, but allows you to tailor permissions for each

I’m not an application, I’m an archivist!
Why should I care?

As librarians and archivists with collection descriptions and/or collections
themselves on the web, you probably do care about being able to access and
meaningfully manipulate textual data on the web at scale.

In many of the exercises we will work through together today, you are, in fact,
one of the “applications” interfacing with web-based data.

Get data out Do something to it Put it back in

JSON
MARC21

Any standardized
data

Access
OpenRefine

XSLT
Custom script (your choice)

Find and Replace
Hand encoding, copy and
pasting, glue and popsicle
sticks, whatever it takes!

*needle coming off
the record*

This is the tough
part.

API possibilities

Questions?

1. Navigate to https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop
2. Once in the repo, bookmark! You’ll need this later.
3. Click “ASpace API Slides.pdf”

4. Download and open. Leave these open; you will be using the slides on your own throughout the
day.

Resource Pitstop - Get these slides

https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop

Setting up your
tech:

A long-ish pitstop

(We promise you’re in the right workshop)

Technical pitstop:
The (FREE) Applications

● Atom
○ A text editor that is handy for interacting with JSON, scripts, and all

sorts of structured data
○ Can utilize additional packages to customize to your needs (e.g. a JSON

“linter”)

● Postman
○ A GUI application for interacting with APIs

Technical Pitstop:
Scripting set-up

We are about to:
● Show you a quick shortcut for opening the terminal/command prompt
● Get some important packages installed on your machines
● Clone our GitHub repository (download some scripts to your computer)

Caveats:
● This is new, we will lose some of you
● You do need to know this, but we have other tofu to fry
● Use these slides if you need to set up your own workstations back at the office

Housekeeping:
● With 15+ people in this workshop, we’ve got 15+ different environments to troubleshoot and 15+

different opportunities to fail - please be patient!
● If, at any point for the remainder of the workshop, you need assistance, please place a hot pink

post-it on the back of your laptop screen

Technical Pitstop - Scripting set-up

Please follow along starting from this
slide

This terrible shade of yellow should be easy to find.

Everyone start with a Green post-it = good to go
Red/pink post-it = please assist!

Practice: Open any folder, then hold shift +
right click anywhere in the window

System Preferences > Keyboard > Shortcuts tab >
Services

Mac PC

Technical Pitstop - Scripting set-up
This is a handy shortcut that you’ll need later

Note: Some (especially older) Mac OSes may not have this option! If so,
no harm. Alert an instructor and we’ll walk you through this manually.

This is just practice, we don’t actually need this window now.

Technical Pitstop - Scripting set-up

Mac PC

1. Please open the terminal:
● Use spotlight search to search for

“Terminal”
● OR, open your Applications folder,

then open the Utilities folder.
Open the Terminal application.

2. Bring up the Cygwin installer you
downloaded as part of your
pre-workshop homework

Technical Pitstop - Scripting set-up

Mac PC

1. Type gcc --version and hit enter

If you are prompted to install, hit Install!
Once complete, type gcc --version again.

If you see the following, you’re good to go.
Leave the terminal open.

1. Start downloading. Say yes to
everything

2. Pick any site to install from and
continue

3. Stop when you get to this screen:

Technical Pitstop - Scripting set-up

Mac

1. Open a browser and navigate to:
brew.sh
(yup that’s a webpage)

2. Copy the long command and paste into
terminal. Hit enter.

3. Enter your password if needed

PC

1. Look for View: at the top of the screen
and select Category

2. Search for “python2” (without quotes)
but do not hit enter; the search
happens as soon as you type

Technical Pitstop - Scripting set-up

Mac

1. Type brew install python and hit

enter

2. Type python --version and hit enter

to be sure Python appears:

3. Type pip install requests

(we will not remind you to hit enter after commands from

now on)

PC

Go to next slide...

1. After you have searched for python2 locate and unskip the following (the list is alphabetical
and the kilobyte counts help):
a. python2: Python 2 language interpreter 5,873k
b. python2-requests: Python HTTP/1.1 request module 84k

2. Now search for git (but don’t hit enter), expand the Devel heading, unskip:
a. git: Distributed version control system 5,387k

3. Finally, search for openssh (don’t hit enter), expand the Net heading, unskip:
a. openssh: The OpenSSH server and client programs 750k

4. Once all four have been unskipped, proceed with install: Next > Next

Windows users only: Install packages

This screenshot shows
what an “unskipped”
line looks like

1. Go back to our GitHub repo, which you bookmarked earlier.
2. Then click the green button, click the little clipboard icon, and Copy to clipboard

Technical Pitstop - Scripting set-up

Everyone

1. Open Terminal
2. Type cd Desktop and hit enter
3. Type git clone [command+v to

paste]

4. Hit enter

1. Open Cygwin
2. Type git clone [right-click then

paste]

3. Hit enter

Technical Pitstop - Scripting set-up

Mac PC

Now you have a folder (either on your Mac’s Desktop, or in C:/Cygwin/home/[username]) that contains
all the materials you’ll need for the rest of today’s workshop.

This folder, titled “ASpace_API_Workshop,” is a direct clone of what you see in your browser on
github.com.

(don’t type this, we
mean an action)(don’t type this, we

mean an action)

Command line
bootcamp

● Some very simple Unix commands are necessary in this workshop
● But more important is being able to use them effectively
● Mac users, and PC users in Cygwin, will be using the same commands…
● ...but will be working in different directories.
● So navigating your own way is super important.

Mac PC

1. In the Finder navigate to your
ASpace_API_Workshop directory

2. Ctrl+click the ASpace_API_Workshop
directory, and select “New Terminal at
Folder”

1. Open Cygwin

Command line bootcamp: Navigation
Where are you, and where do you want to go?

Command line bootcamp: Navigation

Mac PC

Mac users should see something like this:

Note: There will be more screenshots for Windows users than Macs for
the next few slides as we help PC users determine where they are. If
your work computer is Windows, this will eventually matter to you.

PC users should see something like this:

Everyone type pwd and then hit enter.

Where are you?

PC

Command line bootcamp: Navigation
Where are you, and where do you want to go?

Windows users will ask: but where is that? This is non-intuitive, but you’re already in C:\cgywin
because you’re using the Cygwin window, so

This location:

Is this location:

Unix commands for Mac and Cygwin

Where am I? “print working directory” pwd

Command line bootcamp: ls

Everyone type ls and then hit enter (that is L as in List)

What is here?

PC
ls shows the same list of contents that I see if I navigate to C:\cygwin64\home\[user name] in
Windows (this is a screenshot from Valerie’s PC, you won’t have all these files):

Command line bootcamp: ls

Unix commands for Mac and Cygwin

Where am I? “print working directory” pwd

What is here? “list” (remember L as in List) ls

Command line bootcamp: Navigation
Where are you, and where do you want to go?

Now you’re going to move from where you are into the MARAC API Workshop clone folder:

To move into that folder type cd (change directory), leave a space, and then the name of the
directory you want to go into: cd ASpace_API_Workshop

PC

Command line bootcamp: Navigation
Where are you, and where do you want to go?

Happily, the directory you’re in now is more obvious with that handy yellow text.

So remember:

● The path in Windows is: C:\cygwin64\home\[user name]\ASpace_API_Workshop

(but this varies by user)

● And the same path in Cgywin looks like the new prompt, below:

Unix commands for Mac and Cygwin

Where am I? “print working directory” pwd

What is here? “list” (remember L as in List) ls

How do I move from here to
there?

“change directory” cd [type the name of the
directory] (don’t type this, we

mean an action)

Command line bootcamp: Navigation

Now you’re going to move from the MARAC API Workshop clone folder back to the Cgywin home
directory/Mac desktop:

Why? To demonstrate a simple command that means “go up one”

cd .. = “go up one”

Unix commands for Mac and Cygwin

Where am I? “print working directory” pwd

What is here? “list” (remember L as in List) ls

How do I move from here to
there?

“change directory” cd [type the name of the
directory]

Move up one level cd ..

(don’t type this, we
mean an action)

Command line bootcamp: Navigation

Lastly, let’s go back into the ASpace_API_Workshop directory, because that’s where we need to be.

This is a good time to try the up-arrow on your keyboards to get back to a command you already
issued:

● Try hitting the up-arrow a few times
● Pick the command that you need in order to get back into the ASpace_API_Workshop directory
● Use a command that will confirm where you are
● You may need to do this again, you have your handy cards to help you!

Unix commands for Mac and Cygwin

Where am I? “print working directory” pwd

What is here? “list” (remember L as in List) ls

How do I move from here to
there?

“change directory” cd [type the name of the
directory]

Move up one level cd ..

Repeat command Up arrow on keyboard

These are called Unix commands, so Google “unix commands” for other commands that will work on

Macs and in Cygwin.

To make your life harder, remember that these same commands do not work in the Windows command prompt; those are

MS-DOS commands.

(don’t type this, we
mean an action)

GET

Get data out Do something to it Put it back in

We are
here

API possibilities

GET with GUI -
Chronicling America

(and a bit about web searches versus APIs)

Vocabulary pitstop:
GUI

● GUI (gooey) stands for Graphic User Interface: every program you use has a GUI
● But in the programming/scripting world, there is also the command line/terminal
● We will be using both: Postman is a GUI

Image from http://www.differencebtw.com/difference-between-gui-and-command-line/

Scenario: You wish to link to every digitized
edition of a certain newspaper hosted in
Chronicling America.

1. Navigate to ChroniclingAmerica.loc.gov

2. Search for “the times dispatch” in quotes

Web search versus API

Scenario: You wish to link to every digitized
edition of a certain newspaper hosted in
Chronicling America.

1. Click any record

2. Click All Issues

Web search versus API

This lists every issue, but not that helpful. I wonder if there’s another way.

Web search versus API

Does Chronicling America have an API
we can use to access this information
we’re seeing in our browsers?

YES!

To Postman!

GET with GUI - Chronicling America

Scenario: You wish to link to every digitized edition of a certain newspaper in Chronicling America.

http://chroniclingamerica.loc.gov/lccn/sn85038615.json

GET with GUI - Chronicling America

GET with GUI - Chronicling America
Scenario: You wish to link to every digitized edition of a certain newspaper in Chronicling America.

Converting these JSON search results to a CSV (spreadsheet) took less than 10 seconds using an
online converter (we just googled “JSON to CSV converter” and picked one)

Re-purposing API data

Vocabulary pitstop:
JSON

● JSON (jason) is the most typical data transmission standard in APIs
● It is lightweight and easy to read and NOT scary
● Consists of key-value pairs, “key”: “value”

<unittitle>Johns Hopkins University library records</unittitle>

“Title”: “Johns Hopkins University library records”

Questions???

ArchivesSpace
(I know, finally right?)

ArchivesSpace!
● You’ve each been provided a test instance of

ArchivesSpace by our gracious hosts at Lyrasis

● The address of the staff interface of your instance is:
https://ws[your#].lyrasistechnology.org/

● The address of the API of your instance is:
https://ws[your#].lyrasistechnology.org/api

● Go check out the staff interface now!
username: admin
password: admin

● Your number can be found on a post-it at your seat!

https://ws.lyrasistechnology.org/api
https://ws.lyrasistechnology.org/api
https://ws.lyrasistechnology.org/api

ArchivesSpace! - The Scenario
Scenario: You have successfully migrated into -- or have begun to use -- an instance of ASpace at your
institution, but…

● There’s all this new functionality, what do I do with it?
○ I don’t have barcodes for my containers, or I have faux codes
○ I do have barcodes, but they’re not in ArchivesSpace. How do I get them in without ruining

a student worker’s semester?
● There are new fields where there were no fields before

○ I’d love to use URIs for Agents, but that’s a lot of work
○ BARCODES, again with the barcodes

● We didn’t use Archivists’ Toolkit for accessions, how do I get them in now?
● Suppressing and unsuppressing, publishing and unpublishing, and how do I publish everything but

not those things?

As some of you know, it’s a huge undertaking and you might have dozens/hundreds/thousands of old
and new problems.

ArchivesSpace! - The Scenario
Scenario: You have successfully migrated into -- or have begun to use -- an instance of ASpace at your
institution, but this is a short workshop, so here are our problems for today:

1. We don’t have container profiles in ArchivesSpace and would like to, so we need to create some

2. In following the migration instructions for 1.5, we had to add faux codes; we’d like to use our

actual barcodes

3. Now that we have container profiles, we need to link them to actual top containers

Extra archivisty sidebar

● These are, in fact, all problems we’ve addressed (or are addressing) at Johns Hopkins. And this is exactly how
we did (or will be) solving these issues.

● If you switch out "container profiles" for "agent records" or "subject headings" or “digital objects,” the
steps are similar and will likely transfer. Namely:

○ Create new records
○ Modify existing records
○ Link records

Get data out Do something to it Put it back in

Want to
be here

API possibilities

Get data out Do something to it Put it back in

Start
here

API possibilities

Authenticate and GET -
AS with GUI

Endpoint: https://ws[your#].lyrasistechnology.org/api/users/admin/login

password: admin

Authenticate to AS with GUI
Before we start posting to AS, we need to authenticate, so let’s do that and try a GET first:

http://localhost:8089/users/admin/login

Authenticate to AS with GUI

GET from AS with GUI

Key: X-ArchivesSpace-Session

Endpoint:
https://ws[your#].lyrasistechnology.org/api/repositories/2/resources/2

http://demo.archivesspace.org/api/repositories/2/resources/2

GET from AS with GUI

GET from AS with GUI

POST to AS with GUI-
Container profiles

Container profiles

What’s a container profile?

ASpace offers “container modeling” for the first
time in the archives world.

Every type of box (ex. record carton) in your
library gets its own record (a profile), which
records its height, width, and depth. This helps
calculate space on a huge scale, and is a
game-changer for some repositories.

So, we have boxes o’plenty --------------->

But to use this feature, we need to get their
profiles into AS.

Get data out Do something to it Put it back in

Ready
for here

API possibilities

1. Navigate to the directory with our cloned GitHub repo

Mac users: Desktop

Windows users:

C:\cygwin64\home\[username]\ASpace_API_Workshop

2. Open “recordCenterProfile.json” with Atom

3. Packages > Atom Beautify > Beautify

4. Here is the container profile for a record center

carton in JSON, ready to go

5. Copy, and go back to Postman

POST to AS with GUI - Container profiles

POST to AS with GUI - Container profiles

Endpoint:
https://ws[your#].lyrasistechnology.org/api/container_profiles

http://demo.archivesspace.org/api/repositories/2/resources/2
http://demo.archivesspace.org/api/container_profiles

1. Navigate to the directory with our cloned GitHub repo

Mac users: Desktop

Windows users:

C:\cygwin64\home\[username]\ASpace_API_Workshop

2. Open “containerProfiles.json” with Atom

3. Packages > Atom Beautify > Beautify

4. Here are ALL the profiles, ready to go

5. Copy, and go back to Postman

POST to AS with GUI - Container profiles

POST to AS with GUI - Container profiles

Endpoint:
https://ws[your#].lyrasistechnology.org/api/container_profiles

http://localhost:8089/container_profiles

POST to AS with GUI - Container profiles

Don’t hate us: you cannot post multiple records through the GUI
This frustrating exercise will save you a month
(use your month wisely: take a vacation from computers)

Scripting

Using a GUI application like Postman to interact with APIs can be a great way

to learn, explore, and troubleshoot, but ultimately you’ll hit a brick wall,

because:

● It takes an awful lot of clicks to get out a small amount of data (relatively speaking)

● If you want to get multiple full records OUT you’ve got to run a GET as many times as there

are records you want to retrieve

● While you can POST many one-off changes using a GUI like Postman, you can rarely get a GUI

to make intelligent, iterative POSTs at scale

● Manually authenticating is a pain

● Though we told you that you will be sometimes playing the role of “application” in this API

world, you don’t always want to be the application!

Scripting - Why?

Yes, this is a huge barrier to entry for most users, but it can be mitigated:

● We (defined here as both archivists and developers) are a community that likes sharing!

○ Frankly, if you’re sitting down to write scripts from scratch, you’re doing it wrong

● There is no “one right language” to make this work

○ If you have any prior knowledge of a particular scripting language, start there

○ All the scripts you will use in this workshop are Python because: 1) Python (and, to a lesser

degree, Ruby) is Lora’s preferred hammer, and 2) unscientifically speaking, it seems that

Python is the preferred language of archivists (which means there’s more to steal borrow)

○ But, if you want, you can use a Ruby or Perl or PHP or JavaScript shaped hammer!

● The Internet is full of helpful advice!

○ Just don’t feed the trolls

Scripting - How?

Remember all the legwork you did both at home and during the early part of this workshop? You’ve:
● Installed applications, including the text editor Atom
● Installed (or located) a shell, namely Terminal (Mac) or Cygwin (Windows)
● Installed (or confirmed installation of) python

Guess what? You’ve set up a python development environment already! Good work!

With that work complete, for the remainder of this workshop you should only need to type python
[name of script here].py into Terminal/Cygwin, and you’ll be executing Python scripts! Just
remember:

● You should be located in the same directory as the script (and any files it is reliant on) before you
type your command (you can always ls to confirm the script is there!)

For more, see: http://www.shubhro.com/2014/05/29/development-environment/ and/or
http://python-guide-pt-br.readthedocs.io/en/latest/starting/install/osx/ (Mac specific)

Scripting - No, really, how?

http://www.shubhro.com/2014/05/29/development-environment/
http://python-guide-pt-br.readthedocs.io/en/latest/starting/install/osx/
http://python-guide-pt-br.readthedocs.io/en/latest/starting/install/osx/

POST to AS with script-
Container profiles

POST to AS with script
Before we start posting to AS, we need to authenticate, so how do we do that with scripts?

POST to AS with script
“Keep it secret, keep it safe.” - Gandalf

This means no manual authenticating!
Learn to script just for that and call it a win!

POST to AS with script

● We’re all connecting to different instances of ArchivesSpace (so we don’t overwrite and/or clash with
each others’ work!), so we need to tell secrets.py where each of our individual instances live.

● Navigate to the ASpace_API_Workshop directory we cloned from GitHub earlier:
○ Mac users: This should be your Desktop
○ Windows users: This should be “C:\cygwin64\home\[username]\ASpace_API_Workshop”

● Open secrets.py in Atom
● Change the line:

baseURL=’http://localhost:8089’
to
baseURL=’https://ws[your#]lyrasistechnology.org/api/’

http://localhost:8089

Mac PC

1. In the Finder navigate to your
ASpace_API_Workshop directory

2. Ctrl+click the ASpace_API_Workshop
directory, and select “New Terminal at
Folder”

3. Type ls and examine the contents of that
folder

4. Type python postContainerProfiles.py
(case sensitive!)

5. Navigate back to AS in your browser
(https://ws[your#].lyrasistechnology.org)

1. Open Cygwin
2. Type cd ASpace_API_Workshop to enter

the ASpace_API_Workshop directory
3. Type ls and examine the contents of that

folder
4. Type python postContainerProfiles.py

(case sensitive!)
5. Navigate back to AS in your browser

(https://ws[your#].lyrasistechnology.org)

GET with a script - ProPublicaPOST to AS with script- Container Profiles

ArchivesSpace!
Scenario: You have successfully migrated into -- or have begun to use -- an instance of ASpace at your
institution, but this is a short workshop, so here are our problems for today:

1. We don’t have container profiles in ArchivesSpace and would like to, so we need to create some

2. In following the migration instructions for 1.5, we had to add faux codes; we’d like to use our

actual barcodes

3. Now that we have container profiles, we need to link them to actual top containers

POST to AS with script-
Edit barcodes

Get data out Do something to it Put it back in

And
here!

API possibilities

We’re
here

Barcodes/top_containers
Répète: ASpace offers “container modeling” for
the first time in the archives world.

Every type of box (ex. record carton) in your
library gets its own record (a profile), which
records its height, width, and depth.

Every actual box in your collections also gets a
record, and this is called a top container. Simply
put, this is the thing you put a number on: Box
1.

So, your archives might have hundreds or
thousands of boxes called “Box 1”

Barcodes make that sane for AS. Hence, AS 1.5
requires some sort of unique code in every top
container record.

Barcodes/top_containers
Every marathon runner and every top_container must have a unique ID to participate.

Barcodes/top_containers

1. Navigate back to ASpace in your browser

(https://ws[your#].lyrasistechnology.org)

2. Browse > Resources > Gérard Defaux papers > View > expand Research

Materials > click on any file > scroll down to Instances > see fake barcode

3. These are the barcodes generated by the barcoder plugin. Hopkins has

thousands of them.

4. Navigate to our GitHub and look at barcodes.csv

https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop

Barcodes/top_containers
If you’re in ASpace, you will have some version of this problem, which is why we’re featuring it.

Your top containers might:

● Have barcodes already! Well, this is still a lesson in editing records

● Have “faux codes,” like the ones in the AS vagrant

● Have nothing, and you have no idea where to start. We’ll have to refer you to the AS 1.5

instructions and this plugin by Chris Fitzpatrick

So let’s fix our problem and imagine it working at scale.

https://github.com/archivesspace/archivesspace/blob/master/UPGRADING_1.5.0.md
https://github.com/archivesspace/archivesspace/blob/master/UPGRADING_1.5.0.md
https://github.com/cfitz/barcoder/tree/all-repo
https://github.com/archivesspace/archivesspace/blob/master/UPGRADING_1.5.0.md

Barcodes/top_containers

● Let’s investigate the Gérard Defaux papers in your instance of ArchivesSpace

● Look at the instances attached to the archival objects under the “Research Materials” series

● These are “fauxcodes”

● We want our REAL barcodes!

● Luckily, we were able to map the fauxcode to the “real” barcode and generate a csv with this

information

● Let’s take a look at “barcodes.csv”

Mac PC

1. In the Finder navigate to your
ASpace_API_Workshop directory

2. Ctrl+click the ASpace_API_Workshop
directory, and select “New Terminal at
Folder”

3. Type ls and examine the contents of that
folder

4. Type python postBarcodes.py (case
sensitive!)

5. Navigate back to AS in your browser
(https://ws[your#].lyrasistechnology.org)

1. Open Cygwin
2. Type cd ASpace_API_Workshop to enter

the ASpace_API_Workshop directory
3. Type ls and examine the contents of that

folder
4. Type python postBarcodes.py (case

sensitive!)
5. Navigate back to AS in your browser

(https://ws[your#].lyrasistechnology.org)

GET with a script - ProPublicaPOST to AS with script- Edit barcodes

ArchivesSpace!
Scenario: You have successfully migrated into -- or have begun to use -- an instance of ASpace at your
institution, but this is a short workshop, so here are our problems for today:

1. We don’t have container profiles in ArchivesSpace and would like to, so we need to create some

2. In following the migration instructions for 1.5, we had to add faux codes; we’d like to use our

actual barcodes

3. Now that we have container profiles, we need to link them to actual top containers

POST to AS with script-
Link profiles

Get data out Do something to it Put it back in

And
here!

API possibilities

We’re
here

Linking profiles to containers

Container Profiles Top_Containers

1. Type ls and examine the contents of that folder

2. Type python asLinkProfiles.py (case sensitive!)

3. You will be prompted for a resource id and a container id… how do you
determine what you need to know?

4. Let’s return to ASpace real quick

GET with a script - ProPublicaPOST to AS with script - Linking profiles

The interface — just another lens on the same data — is helpful for constructing API requests.

View a resource record for its resource number: View a container profile for its profile number:

POST to AS with script - Linking profiles

ArchivesSpace! You did it!
Scenario: You have successfully migrated into -- or have begun to use -- an instance of ASpace at your
institution, but this is a short workshop, so here are our problems for today:

1. We don’t have container profiles in ArchivesSpace and would like to, so we need to create some

2. In following the migration instructions for 1.5, we had to add faux codes; we’d like to use our

actual barcodes

3. Now that we have container profiles, we need to link them to actual top containers

GET and POST across two
applications with Python

App-to-app Communication

Scenario: As your university’s web archivist, you wish to make your Archive-It
web crawls accessible to users who access your collections via ArchivesSpace
without having to individually create digital objects every time you run a new
Archive-It crawl.

App-to-app Communication

1. In ArchivesSpace, navigate to the “Records of the Johns
Hopkins University Library” resource

2. Expand Subgroup 12: Library Website

3. Click on library.jhu.edu

4. Note that archival object’s level

App-to-app Communication
We now know that we can access ArchivesSpace’s archival object records via the
ArchivesSpace API, right?

In fact, with a decent enough search we could probably even have a script return JUST those
archival objects with the level “Web archive.”

Since we’re going to want to keep programmatically working with/altering this data after we
find it, we’ll use a Python script, instead of Postman to run this search.

Code snippet from archiveIt.py

App-to-app Communication

App-to-app Communication
Does Archive-It have an API we can use to access this information we’re
seeing in our browsers?

YES!

App-to-app Communication

Code snippet from archiveIt.py

With the right amount of trial and error, we can also get information about our Archive-It holdings
out of the Archive-It API with a Python script as well!

App-to-app Communication

1. In Terminal/Cygwin run python archiveIt.py and let’s see what happens!

2. Go check out that “Records of the Johns Hopkins University Library”
resource record once again.

Questions???

Icing and Advice

Official: http://archivesspace.github.io/archivesspace/api

Non-Official: https://gist.github.com/jgpawletko/18a1982ec91b290039a968fe4eb924e8

Icing: Interpreting (ASpace) API endpoints

http://archivesspace.github.io/archivesspace/api
https://gist.github.com/jgpawletko/18a1982ec91b290039a968fe4eb924e8

The interface — just another lens on the same data — is helpful for constructing API requests.

Determining the repository number: Determining an agent number:

Icing: Interpreting (ASpace) API endpoints

http://localhost:8089 The address of your instance of ASpace. You will ONLY replace “local host,” the colon and port number
remain. EX. http://archivesspace.fakeu.edu:8089

/repositories The presence of “repositories” here means that this endpoint is repository-specific. Some non-repo specific
requests in AS are for Agents and Access Points, which span all of AS. EX.

http://archivesspace.fakeu.edu:8089/agents

/:repo_id The presence of this colon means this value will be unique to your institution. How can you determine the
repository number? You can use the repo endpoint, or, from within AS navigate Systems > Manage

Repositories > select repository > and look at the address bar.
EX. http://archivesspace.fakeu.edu:8089/repositories/3

/resources Other examples are /accessions or /top_containers. EX.
http://archivesspace.fakeu.edu:8089/repositories/3/accessions

/1 The first resource. How can you determine resource numbers? Navigate to the resource in the interface and
its number will be in the address bar. EX. http://archivesspace.fakeu.edu:8089/repositories/3/resources/1

Sample endpoint from documentation: http://localhost:8089/repositories/:repo_id/resources/1

Example “fake” endpoint that mimics real life: http://archivesspace.fakeu.edu:8089/repositories/3/resources/1

http://localhost:8089/
http://localhost:8089/

The least most helpful thing you’ll hear is, “It’s in our GitHub!”

If you’re serious about learning to script, you should watch the 10 million GitHub intro videos
on YouTube

Even casual users will benefit from using other people’s scripts (that’s how devs work!)

Let’s go look at our repo together, we made it for you!

https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop

Icing: What IS GitHub anyway?

https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop
https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

We purposely made you “fail” a few times today. Get used to it!

● You WILL not succeed on the first try.
● You WILL hit unanticipated snafus, oftentimes due to data models and/or poorly written

documentation (aka, due to no fault of your own!).
● You WILL be fitter, happier, and more productive if you start building a community now

and asking questions.

Icing: There will ALWAYS be “gotchas”

Icing: A frequent ASpace “gotcha”

it·er·a·tion
ˌidəˈrāSH(ə)n/
noun

1. the repetition of a process or utterance.
○ repetition of a mathematical or computational procedure applied to the result of a previous application,

typically as a means of obtaining successively closer approximations to the solution of a problem.

Lock version - a value that incrementally increases every time an AS record is altered. In
practice, this means work cannot and should not continue on the data in question, i.e. your
team has to stop work

Icing: A frequent ASpace frustration
Session time and page limits

● Ever been timed out of your bank account? Frustrating but vital
● The amount of time you have after authenticating is called “session time”
● ASpace default is very short
● Ask your ASpace tech person to up the session time in the AS config; we’ve provided instructions

in the take home document (which really will happen, we promise)

Many other applications provide robust APIs for your use:
● ILSes like Voyager;
● Digital exhibition applications like Omeka;
● Digital collections/repository applications like ContentDM or Islandora; and,
● Cloud-based sharing applications like Dropbox/Drive/Box.

While we didn’t work through exercises with these applications today, hopefully
you now know the steps to take to do future API work of your own, namely:

● Research the API, including authentication requirements and endpoint documentation;
● Play around in Postman (or another GUI API application);
● Determine whether your desired tasks can be accomplished through the GUI, or if you need a

scripting language;
○ If the latter, determine if someone else has already tackled your task (for example, on

GitHub)
● Iteratively test (in a non-Production environment!)
● Profit!

Icing: What about XYZ application?

https://developers.exlibrisgroup.com/voyager/apis

User stories

Can the API create reports?
● Yes… but an API is the wrong tool for reporting
● Like using a jack-hammer indoors: yes it will work, but it will be more effort with the

wrong tool
● For AS users in particular:

○ Wait for reporting to improve, because it will
○ But in the meantime (or for more customized reporting) we suggest connecting AS to

MS Access. If you don’t know Access, it’s easier to learn that than learning to script
just for reports.

■ You can find explanatory slides in the workshop GitHub > additional resources
■ Credit to Nancy Enneking, Head of Institutional Records at the Getty and Celia

Caust-Ellenbogen, Friends Historical Library of Swarthmore College for the
method

Can APIs change the staff/user interface?
● No: the API is only a way of manipulating data

● Look at the API endpoints and see if one relates to the change you

want to make

● We did write something that changed enumerations

https://github.com/jhu-archives-and-manuscripts/python_scripts/blob/master/suppressSelectEnumerations.py

Can APIs improve my agent records?
● Yes!

● Hopkins made changes to almost all of our Agent and Subject records

through the API

● We added VIAF ids to Agents and converted LCSH to FAST

● You already have improved Corporate Names from earlier

● Let’s put those to work!

Load, GET, and compare -
VIAF

API possibilities

Get data out Do something to it Put it back in

We are
here

Load, GET, and compare - VIAF

Scenario: You have an existing spreadsheet containing a number of
organizational names that are either subjects or creators of some of your
collections. Now, you want to take this manually-made spreadsheet and
actually do some authority control work!

1. Take a look at “organizations.csv” in GitHub:

https://github.com/jhu-archives-and-manuscripts/ASpace_API_Worksh

op/blob/master/organizations.csv

2. From Terminal/Cygwin type

python viafReconciliationCorporate.py

Load, GET, and compare - VIAF

In theory, we could make changes to this .csv file (add/change lines, etc.), but we’re not going to

have you do this today. Feel free to try it at home, though, with the caveat that some

spreadsheet editors (particularly Excel on Macs) output messy .csv’s that cause errors when the

script is run.

https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop/blob/master/organizations.csv
https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop/blob/master/organizations.csv
https://github.com/jhu-archives-and-manuscripts/ASpace_API_Workshop/blob/master/organizations.csv

Uh oh...

Load, GET, and compare - VIAF

Downloading the fuzzy wuzzy python package:

1. Google “fuzzy wuzzy github” and it should be the first result

2. Click the green “Clone or Download” button, click the little

clipboard icon, and copy the path to the clipboard

3. Confirm that terminal/cygwin is still in the ASpace_API_Workshop

folder

4. Type git clone then paste the path, which should look like:

git clone https://github.com/seatgeek/fuzzywuzzy.git

5. Hit enter

Technical Pitstop - Installing extra packages

https://github.com/seatgeek/fuzzywuzzy.git

Installing the fuzzy wuzzy python package:

1. Type cd fuzzywuzzy to enter the newly created fuzzywuzzy directory

2. Type ls to see what’s in the directory and note the script “setup.py”

3. To execute that setup script, type python setup.py install

4. The package is installed!

5. Type cd .. to return you to the ASpace_API_Workshop directory

Technical Pitstop - Installing extra packages

Let’s try this again!

1. Type or up-arrow python viafReconciliationCorporate.py

2. Success!

3. Go back to your spreadsheet program and open the newly created

“viafCorporateResults.csv” file from the ASpace_API_Workshop

directory

Mac users: Desktop/ASpace_API_Workshop

Windows users: C:\cygwin64\home\[username]\ASpace_API_Workshop

4. The script created this new file for you. Let’s inspect it!

Load, GET, and compare - VIAF

POST with script - VIAF

Before posting these VIAF corporate entities into ArchivesSpace, we must
first add VIAF as a valid “name source” in ArchivesSpace

1. Go to the ArchivesSpace staff interface at:
https://ws[your#].lyrasistechnology.org

2. In the top right select “System > Manage Controlled Value Lists”
3. In the drop-down you’re provided, select “Name Source

(name_source)”
4. In the middle right click “Create Value”
5. Name this value “viaf”

a. Note: The punctuation here is important since it must match what is in our Python
script. All lowercase, no spaces.

6. Click “Create Value”

Post from a CSV - VIAF

With the VIAF name source added to ArchivesSpace, next:

1. Confirm you still have a file called “viafCorporateResults.csv” in your

ASpace_API_Workshop directory

2. From within the ASpace_API_Workshop directory in Terminal/Cygwin

execute python postVIAFOrganizations.py

3. Go back to the ArchivesSpace staff interface at:

https://ws[your#].lyrasistechnology.org

4. In the top left click “Browse > Agents”

5. Voila!

Post from a CSV - VIAF

Wrap up!

Thanks!
This workshop is a heavily abbreviated/modified version of the series of API workshops
co-taught for MARAC by Lora Woodford and Valerie Addonizio. For more on these workshops,
see: https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

Thanks to Eric Hanson, Metadata Librarian at JHU, for his troubleshooting and all-around good
spirits (YAY ERIC!)

Several of these concepts and/or exercises were tested on JHU Sheridan Libraries’ staff,
including NDSR Resident Elizabeth England.

Anyone who has ever shared help/advice/support on blogs/listservs/bar stools who are too
numerous to fully name (but we’ll try in person if you ask us to!).

https://github.com/jhu-archives-and-manuscripts/MARAC_API_Workshop

