
Project phases:
1. Migrate collection-level data (~8,000 collection and accession records),

and integrate with Voyager ILS (2017–18)

2. Remediate and migrate ~1,400 EAD finding aids (2019)

3. Implement public-facing interface for finding aids, and integrate with
other discovery services (2019–20)

David Hodges and Kevin Schlottmann

Data and workflow complexities:
● Several archival repositories (RBML/Univ. Archives, Avery,

Burke, Starr) with divergent tools/workflows

● ~4K MARC records

● ~4K accessions in Archivists’ Toolkit

● ~1,400 legacy EAD finding aids

● Bespoke finding aids in PDF or HTML

● Linked spreadsheets and other binary formats

Motivations:
● Single-source of truth for description

● Improved creation and editing of archival description

● Unify practices and workflows across CU libraries

● Modernize infrastructure

● Improve discoverability and UX

Phase 2 EAD Migration

● Combine container structure
(<dsc>) from finding aids with
collection-level data already in
AS and MARC records.

● Some collection-level
description was better in legacy
finding aids, but varied from
record to record.

● How to determine the source of
truth for conflicting data?
Review process could be
extremely time consuming.

EAD_Process (Python + Google Sheets)

● Python + Google Sheets + XSLT: extract
data, flag elements to merge, process all
files.

● Two data sources: legacy finding aid and
EAD exported from AS processed in pairs.

● Defined list of XPATH queries for each.

● Data is extracted from both data sets and
sent to a Google Sheet, which collates into
side-by-side view for each of targeted
elements.

EAD comparison and review
workflow (Google Sheets)

● Each element is presented
side by side for comparison.

● Archivists review and flag
which is the “correct” one.

● Some heuristics help
automate decision, e.g., if text
size differs by +x chars, then
migrate the longer.

EAD_Merge (Python + Google Sheets + XSLT)

● After archivists have completed review, a
Python script reads Google Sheet
migration grid rows as lists ([['4079432',
'bioghist', 'scopecontent', 'abstract'],...]).

● Legacy EAD file is sent to XSLT with
parameters of which additional elements
to migrate (other than <dsc>).

● XSLT merges two EAD trees, incorporating
<dsc> plus selected additional elements
per the parameters.

● Another XSLT stylesheet in pipeline
performs other global cleanup functions.

● Output is validated and QC’d before
importing into AS.

Thank you!

⟺

Code repo
https://github.com/cul/rbml-archivesspace

Contact info
• @archivistkevin // kws2126@columbia.edu

• dwh2128@columbia.edu

