
All About Plug-ins for

ArchivesSpace

Laney McGlohon

Lora Woodford

(special guest Christine Di Bella)

Agenda

• What is an ArchivesSpace plug-in?
– Overview

– When - and when not - to use one

– Examples and finding plug-ins

• What if I can’t use plug-ins?

• Project management and plug-ins

• Steps to create and use plug-ins

• Getting help with developing plug-ins and

finding a wider audience

What is an ArchivesSpace

plug-in?

ArchivesSpace plug-ins provide a mechanism to

customize ArchivesSpace by overriding or

extending functions without changing the core

codebase. As they are self-contained, they also

permit the ready sharing of packages of

customization between ArchivesSpace instances.

When should you use a plug-in?

• To add institution-specific extended

functionality, style, branding, and

customizations

• Examples:
– Customizing exporters

– Setting required fields

– Auto-generating DOIDs,

accession numbers, etc.

– Modifying labels

– Customizing staff or public display

When shouldn’t you use a plug-

in (in a perfect world)

• Obvious bugs
– Bugs should be reported to the program and fixes

incorporated into the core code

– You may still wish to expedite the fix by

implementing a plug-in in the interim, and may even

wish to submit a pull request back to the core code!

• One-off data needs

• When you can’t commit to a maintenance

plan

Maintenance considerations

• New releases may impact the efficacy (or

even the need for) your plug-in

• Pay attention to release notes and always

confirm your plug-ins are still working as

intended before upgrading

• Example:
– JHU MARC exporter initially included bug fix for AR-

1189

– JHU PUI plug-in (not surprisingly) broken post-2.1

https://archivesspace.atlassian.net/browse/AR-1189

Some simple plug-in examples

• Customizing field and option labels

• Moving branding image from right to left

• Customizing MARC exporter

Customizing field and option labels

Customizing field and option labels

• To override some part of a locale file for the staff interface, you can just add

the following structure to the local plug-in:

plugins/local/frontend/locales/en.yml

• For example, to change the text in the become-user pull-down entry, put

this in the en.yml file mentioned above:

en:

navbar:

become-user: Become Another User

• Restart ArchivesSpace

Moving branding image

from right to left

Moving branding image

from right to left
The placement of the branding image is handled by the
public/app/views/shared/_header.html.erb file, so in order to change the

position from right to left, the file needs to be overridden in a plug-in.

The contents of the core code public/app/views/shared/_header.html.erb

is:
<section id="header">

<div class="row">

<div class="col-sm-9 h1">

<% unless request.original_fullpath == '/' %>

<a title="<%=t('brand.title_link_text') %>"

href="<%= AppConfig[:public_proxy_url] %>">

<% end %>

<%= t('brand.title') %>

<% unless request.original_fullpath == '/' %>

<% end %>

</div>

<div class="col-sm-3 hidden-xs">

<img class="logo" src="<%= asset_url(AppConfig[:pui_branding_img]) %>" alt="" />

</div>

</div>

</section>

A

B

Moving branding image

from right to left
In the plugins/local/public/views directory, add a new directory called

shared and create a file called “_header.html.erb” there.

Add this snippet to the
plugins/local/public/views/shared/_header.html.erb file:

<section id="header">

<div class="row">

<div class="col-sm-2 hidden-xs">

<img class="logo" src="<%= asset_url(AppConfig[:pui_branding_img]) %>" alt="" />

</div>

<div class="col-sm-9 h1">

<% unless request.original_fullpath == '/' %>

<a title="<%=t('brand.title_link_text') %>"

href="<%= AppConfig[:public_proxy_url] %>">

<% end %>

<%= t('brand.title') %>

<% unless request.original_fullpath == '/' %>

<% end %>

</div>

</div>

</section>

A

B

Moving branding image

from right to left

So what did this change do?

It swapped the order of the two <div> tags in the erb file. By

putting the <div> that handles the branding image before

the <div> that handles the text that displays, the columns

where these <div> tags are rendered are rearranged.

Don’t forget to restart ArchivesSpace to be able to see the

change!

Autogenerating Digital Object IDs

Original functionality

Added functionality

Autogenerating Digital Object IDs

• ArchivesSpace’s Digital Object records require an identifier, defined as:
– A unique identifier for the digital object as a whole. May be an ARK, HANDLE, a URI, or any

string that uniquely identifies the digital object. The field needs to be completed for a

valid METS record to be exported.

• What if you have nothing obvious to use to populate that field? Can we

autogenerate a random hash to fill this field?

– Yes!
• ArchivesSpace already uses the SecureRandom.hex Ruby method to do

exactly this elsewhere in the application

• Create a plug-in that modifies:
– backend/model/digital_object.rb

• Call SecureRandom.hex on initial save.
– frontend/views/digital_objects/_form_container.html.erb

• Display text informing user that field will be autogenerated on save
– schemas/digital_object.rb

• Set hex pattern and do not require field for initial save

https://github.com/lorawoodford/autogenerate-doid/tree/master/schemas

Autogenerating Digital Object IDs

• Go to

https://github.com/lorawoodford/autogenerat

e-doid

• Navigate to archivesspace/plugins and

either git clone or download and unzip
autogenerate-doid

• Add ‘custom-marc-exporter’ to

config/config.rb under AppConfig[:plugins]
• Restart ArchivesSpace

https://github.com/lorawoodford/autogenerate-doid

Finding plug-ins

• If you have a need and it’s not met in the

application, chances are someone else has

had it too - and may have created a plug-in

for it

– Look at

https://github.com/archivesspace/archivesspace/tree

/master/plugins and

https://github.com/archivesspace-labs

– Search github for “archivesspace”
• Lots of cool development going on by many community members

https://github.com/archivesspace/archivesspace/tree/master/plugins
https://github.com/archivesspace-labs

What if I can’t use plug-ins?

If you don’t host your own ArchivesSpace or if your IT

support is skeptical or overwhelmed, what then?

• Talk to your IT folks/host

– Build trust/confidence with small steps

– Try to work with them to use a plug-in that does something small or is

only needed one time

• Submit individual feature requests to build what you want into the

application

– https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/19202060/How+to+

Request+a+New+Feature

https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/19202060/How+to+Request+a+New+Feature

What if I can’t use plug-ins?

• Build community support for what you want in the application

• Build community partnerships to convert a plug-in that does what

you want to a standard distribution plug-in (the way the LCNAF

plug-in works) or core code

ALSO

• The project management principles we outline next apply to any

kind of project, and will come in handy no matter your specific

situation with respect to plug-ins

Project management

and plug-ins

• Project management: the key to any successful project

– Identify the need

– Put together a written plan of work

• What happens in the application now?

• What do you want to happen/what should it look like?

• What are the ramifications?

– Think about unintended consequences

• Who’s going to do the work and who’s going to test it?

– Work with stakeholders to build and test the plug-in

• Involve the wider ArchivesSpace community when useful

Example: Customizing the

MARC exporter

Default exporter Overridden exporter

Customizing the MARC exporter

• Exporters packaged with the application are necessarily non-specific in

nature

• Exporters can be customized by overriding the defaults set in
backend/app/exporters/models

• Create a plugin with custom settings with the following two files:
– backend/model/custom-marc21-overrides.rb

– backend/model/utils-marc-overrides.rb

• Copy the existing relevant exporter model from the core code and use it as

your guide as you make overrides

– Delete out any block you’re not changing

– Leave in and alter any blocks you are changing

– Pro-tip: Comments are your friends.

• You can see what has been changed in the MARC exporter we’re using

here in the plug-in’s README.md

https://github.com/lorawoodford/custom-marc-exporter/blob/master/README.md

Customizing the MARC exporter

• Go to

https://github.com/lorawoodford/custom-

marc-exporter

• Navigate to archivesspace/plugins and

either git clone or download and unzip
custom-marc-exporter

• Add ‘custom-marc-exporter’ to

config/config.rb under AppConfig[:plugins]
• Restart ArchivesSpace

https://github.com/lorawoodford/custom-marc-exporter

Steps to create a plug-in

• Identify what change is required. Should the

implementation be extended or overridden?

• Determine where implementation is in the code

• To override behavior, rather than extend it, match the

path to the file that contains the behavior to be

overridden.

NOTE: The name layout_head.html.erb is special:

anything you put in a file under

[plugin_name]/frontend/views/layout_head.html.erb

or

[plugin_name]/public/views/layout_head.html.erb

will be inserted at the top of every page delivered by ArchivesSpace.

Plug-in directory structure
The directory structure within a plug-in is similar to the structure of the core

application. The following shows the supported plug-in structure. Files

contained in these directories can be used to override or extend the behavior

of the core application.

local Enabled by default

backend Database and API

controllers backend endpoints

model database mapping models

converters classes for importing data

job_runners classes for defining background jobs

plugin_init.rb if present, loaded when the backend first starts

frontend Staff Interface

assets static assets (such as images, javascript) in the staff interface

controllers controllers for the staff interface

locales locale translations for the staff interface

views templates for the staff interface

plugin_init.rb if present, loaded when the staff interface first starts

public Public User Interface

assets static assets (such as images, javascript) in the public interface

controllers controllers for the public interface

locales locale translations for the public interface

views templates for the public interface

plugin_init.rb if present, loaded when the public interface first starts

migrations Database migrations

schemas JSONModel schema definitions

search_definitions.rb Advanced search fields

How to enable the plug-in

• Plug-ins are enabled by placing them in the ArchivesSpace installation

plugins directory and referencing them in the ArchivesSpace

configuration, common/config/config.rb.

– For example: AppConfig[:plugins] = ['local',

'my_plugin']

• Note that the order that the plug-ins are listed in the :plugins configuration

option determines the order in which they are loaded by the application. Be

mindful of how plug-ins “play” together.

• Make sure that you uncomment the line with AppConfig[:plugins] =

['local', 'my_plugin’]

Getting help

• The ArchivesSpace community wants to

help make your plug-in dreams come true

– Core Committers

– Users Group listserv and Google Group

• Slack channels, especially Archivists

Working with Archival Data (shoes-

untied.slack.com)

• Wider GitHub community

Getting a wider audience

• Think about whether your plug-in could be

helpful beyond your own institution (most can!)

• If it can

– Promote it via the listservs

– Consider a write-up for a monthly update or blog

post

– Bring it up in an open call

– Work with the community to make the case for it to

be part of the standard distribution of ArchivesSpace

or core code

Developer (and plug-in

afficianado) resources
• https://github.com/archivesspace/archivesspace/blob/master/plugins/PLUGINS_REA

DME.md

• https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/17137734/Plugins+and+S

cripts

• http://campuspress.yale.edu/yalearchivesspace/category/what-archivesspace-does/

• http://libraryblogs.is.ed.ac.uk/librarylabs/tag/archivesspace/

• http://archival-integration.blogspot.com/2015/07/archivesspace-donor-details-

plugin.html

• https://guides.nyu.edu/archivesspace/development

• https://blogs.library.duke.edu/bitstreams/2016/09/21/archivesspace-api-fun/

• https://blogs.harvard.edu/archivaldescription/2017/01/26/spreadsheet_to_ead_to_as/

• https://rubyexample.com/user/djpillen

• https://library.osu.edu/blogs/it/category/archivesspace/

• https://www.youtube.com/watch?v=hWP430Q5EWM
• Turning a plug-in into core code:

https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/349995159/Turning+an+ArchivesSpac

e+Plugin+into+Core+Code

https://github.com/archivesspace/archivesspace/blob/master/plugins/PLUGINS_README.md
https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/17137734/Plugins+and+Scripts
http://campuspress.yale.edu/yalearchivesspace/category/what-archivesspace-does/
http://libraryblogs.is.ed.ac.uk/librarylabs/tag/archivesspace/
http://archival-integration.blogspot.com/2015/07/archivesspace-donor-details-plugin.html
https://guides.nyu.edu/archivesspace/development
https://blogs.library.duke.edu/bitstreams/2016/09/21/archivesspace-api-fun/
https://blogs.harvard.edu/archivaldescription/2017/01/26/spreadsheet_to_ead_to_as/
https://rubyexample.com/user/djpillen
https://library.osu.edu/blogs/it/category/archivesspace/
https://www.youtube.com/watch?v=hWP430Q5EWM
https://archivesspace.atlassian.net/wiki/spaces/ADC/pages/349995159/Turning+an+ArchivesSpace+Plugin+into+Core+Code

Thank you!

Any questions?

Contact Information:

Laney McGlohon – laney.mcglohon@lyrasis.org

Lora Woodford – lora.woodford@lyrasis.org

Christine Di Bella – christine.dibella@lyrasis.org

mailto:laney.mcglohon@lyrasis.org
mailto:lora.woodford@lyrasis.org
mailto:christine.dibella@lyrasis.org

