


Historically, archival collections had MARC records created in cataloging and were 
separately described in special collections. Some finding aid records were based off 
MARC, but many were done separately.

Most access points, especially subjects, were better on the MARC records.

So we needed to figure out how to bring these over into ArchivesSpace and attach them to 
the correct resource records.



I broke the problem down into three deliverables I needed. First, I needed to create a 
spreadsheet which paired subjects and the resource IDs of the ArchivesSpace objects to 
which they beloned.

I then needed to create the new subject records in ArchivesSpace (if they didn’t already 
exist)

And finally, I needed to find a way to connect the two.



I used the following tools--the ArchivesSpace MySQL database, to which I connected via 
MySQL Workbench; MarcEdit for getting data from the extract of MARC records; 
OpenRefine for connecting data, particularly the cell.cross function which lets you use it like 
a database; and Python scripts, especially the ArchivesSnake library to use the 
ArchivesSpace API.



I’ll walk through the process of getting data from point A to point B, a series of tubes.



This is an overview of the steps involved.



First, I worked with our batch MARC team to get an extract of all records for archival 
collections. I then used MarcEdit to produce a CSV with the following fields -- the catkey, 
which is our local catalog identifier, the title (245), the subjects (650s), and the 856u or 
finding aid URL(s). When extracting the 650, I had to include subfields for later parsing by 
my subject-building script. I had MarcEdit use pipe characters as separators so that I could 
break them into new lines in OpenRefine.



This is a sample data extract. You’ll note the pipe characters in the 650s. In the 856u, the 
217 near the end is the old EAD_ID. This will become important later.



Over in MySQL Workbench, I ran the query shown to get all published resources where the 
title wasn’t “unspecified” -- which appeared to be our version of a blank title. I only got titles 
from repository 3, our live repository. I extracted the id, title, and ead_id. I’ll refer to the main 
id as the ArchivesSpace or ASpace ID moving forward.



In an idea world, it would be easy to pair MARC records with ArchivesSpace resource 
records just using the titles. Excel Fuzzy matching helps. However, there were some 
significant differences in titles and some items had multiple MARC records. 

Instead, I paired the first batch on the ead_id which was the same code as the filename part 
of the finding aid URL. This did not capture all matches, but provided a group of several 
hundred on which to start.

Going forward, I’ll work on all title matches which didn’t have 856s but weren’t duplicates 
and then review duplicates from the original title match.



In pairing records, I stripped all but the filename slug from the 856u field, which I then called 
the 856u_id. I added both projects to OpenRefine and used the cell cross function to 
perform the equivalent of a database key match. When the ead_id and 856u_id matched, I 
inserted the ASpace ID into a new column in the MARC extract spreadsheet.



This is a sample of the resulting data. I’ve removed the title and will soon remove the 
856u_id. 



What I actually need to make the updates is just a spreadsheet with ASpace ID and the 
subjects which I should add. However, the subjects are still in string format and are pipe-
separated. In OpenRefine, I can use edit to split multi-value cells in a column on a 
character, including pipe. Then in the ASpace ID column, I used the “fill down” option to add 
IDs to each row.



This is an example of the previous data split and then filled-down. Now we have ID/value 
pairs.



We then need to derive just the unique strings. By reordering and blanking down, we get a 
column which we can export/paste into a text document. After sorting, one must make the 
new order permanent in order for this to work.



Ordered by subject.



And blanked down.



I then copied only the 650s into a text file. I stripped final punctuations and removed extra 
linebreaks. The script in my linked repository, build-subjects.py, takes each line, breaks it 
apart by subfield, and creates JSON objects which can be uploaded to ArchivesSpace.

When uploading to ArchivesSpace, it determines the subject isn’t a duplicate and adds term 
IDs. This means I didn’t have to figure out what the ID was for the existing geographic term, 
Pennsylvania. The system handled that part.



This is a sample of what the text file looked like.



Using the logged output of the script, which involves the API response, I extracted the 
newly-made subject IDs and full strings, as well as the existing subject IDs identified for a 
few of them. As shown above, it uses “conflicting_record” in the JSON to return the subject 
URI.

I made this into a spreadsheet of subject IDs and strings.

In OpenRefine, I again used cell cross. This time, I matched full subject string content and 
inserted the IDs into the spreadsheet.

I then deleted the subject string column. Now it was just ID pairings.



This is an example of the resulting data.



I then used fill down to populate IDs in each pairing. I sorted by the ASpace ID and 
reordered permanently. This took us back to an earlier step, but now with better data.



Sample resulting data.



Now we need just one ASpace ID and a second column with all the subject IDs. I blanked 
down the ASpace ID column, then edited the subject ID column to join multi-valued cells.



Again, I used the pipe character.



The next script I wrote, update-resources.py, downloads resource records and updates 
them. Then, after some review, I used upload-updated-resource.py to upload them with the 
API.



Here’s a quick look into the steps of updating resources. First, one downloads the 
appropriate record, using its ID. Then, for each subject identifier in the right-hand column, 
the script -- ensures there isn’t already a relationship between the two. If there isn’t, it 
appends the relationship to the subjects section (which it creates, if one doesn’t exist). It’s 
slightly more complex in that it also preserves order of initial subjects, if any. It attaches 
subjects in the order indicated by the spreadsheet, which is likely unstructured. If ordering 
of subjects is important to you, this will require intervention. However, at the highest level it 
often doesn’t (at least in a post Rule-of-3 era)




